Numerical Calculation of Temperature Increase During MRI due to the Presence of Total Hip Replacement Implants

Vasileios Gkyrinis and Theodoros Samaras
Department of Physics, Aristotle University of Thessaloniki (GR)

Background

- Active or passive implants can heat the surrounding tissue when inside the MRI scanner
- This leads to exclusion of patients from MRI scanning due to implants, unless heating can be assessed and mitigated

Objective

To demonstrate the possibility of assessing worst-case temperature rise from implants with numerical methods

Materials and methods

Head

Stem

- Coupled electrothermal problem
- Results normalized to 2W/kg in phantom (normal mode)

Results

Induced electric currents

Results

Results

Temperature rise at various points with different materials

Top Implant								
Point :	1	2	3	4	5	6	7	8
Co-Cr-Mo	11.3	3.4	0.9	0.6	0.7	0.9	0.8	1.2
Stainless Steel 316L	11.0	3.3	0.9	0.6	0.7	0.9	0.8	1.1
Ti Alloy Grade 5	12.7	3.5	0.7	0.5	0.7	1.0	0.9	1.5
Steel + Alumina Liner	11.0	3.3	0.9	0.7	1.2	1.7	1.5	1.6
Steel + Zirconia Liner	11.1	3.3	0.9	0.7	1.0	1.5	1.3	1.7
Steel + Polymer Liner	10.9	3.2	0.9	0.8	1.2	1.9	1.6	2.1
Bottom Implant								
Point :	1	2	3	4	5	6	7	8
Co-Cr-Mo	8.2	2.5	1.7	1.6	1.7	3.3	2.6	3.2
Stainless Steel 316L	8.0	2.5	1.7	1.6	1.7	3.2	2.5	3.1
Ti Alloy Grade 5	9.0	2.5	1.5	1.7	1.6	3.5	2.6	3.5
Steel + Alumina Liner	8.3	2.6	1.8	1.8	2.3	4.2	3.6	3.8
Steel + Zirconia Liner	8.3	2.6	1.8	1.7	2.2	4.1	3.3	3.9
Steel + Polymer Liner	8.2	2.5	1.8	1.8	2.4	4.5	3.7	4.2

Conclusions

- Modern numerical tools allow for the prediction of temperature rise in tissue next to an implant inside the MRI
- ➤ The comparison of measurements in the literature with present numerical results shows very good agreement
- Computer simulations can be used for parametric analysis of tissue heating with implant shape, material used, etc.
- Costly, lengthy and tedious measurements in an experimental setup could be replaced in the future by calculations